TTP beats the Faraday Cage with Fluxor

Engineers at The Technology Partnership (TTP) have discovered a way to break through the Faraday Cage that prevents the entry or escape of an electromagnetic field through a metallic enclosure. While the Faraday Cage effect does have useful applications from preventing leakage from microwave ovens to lightning strike protection and screening data cables, TTP’s new patent-pending Fluxor technology will have major benefits for power and data transfer through metal shielding. TTP is already using the technology for monitoring fluid levels in steel pipes, taking readings from medical implants and measuring data from inside high-performance F1 engines.

TTP’s Fluxor method creates a ‘window’ for electromagnetic transmission of power and data by applying a strong DC magnetic field, which lines up the magnetic dipoles in the material to ‘saturate’ a small area of the metal screen. This reduces the permeability and increases penetration to make it possible to transfer electromagnetic power and signals. Experiments conducted by TTP using steels from 5-15mm thick show that the optimum operating frequency range is in the region of 400-500Hz.

In a typical operating scenario, a portable interrogator unit with a permanent magnet or electromagnet could be placed on top of a fixed sensor through a metal wall. A Fluxor window is opened to transmit power to energise the sensor and transmit a signal back – all without the need for physical openings in the enclosure. 

The Faraday Cage effect was first observed by Michael Faraday in 1836 and has been a regular topic in school physics lessons and popularised in disaster and spy films. The most common example of the Faraday Cage is probably the loss of phone signals when travelling in a steel lift.

“The ability to overcome the shielding characteristics of a Faraday Cage opens up many exciting opportunities, combined with new battery-free, ultra-low power wireless sensor technology also being pioneered at TTP,” said Dr Allan Carmichael from TTP. “We see these developments as major enablers for delivering the Internet of Things that will allow billions of devices to communicate and interact with each other. We are currently working with a number of customers on use cases that exploit the Fluxor technology and expect to see practical applications deployed in the next few years.”

Let’s talk.

Want to talk to us about fluxor technology?